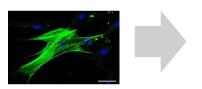
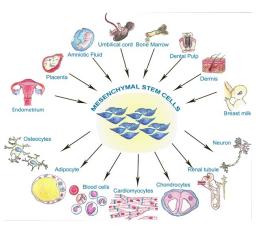

Cell and Gene Therapies in «Pills»

Oncology:

30 trials on non-small cell lung cancer

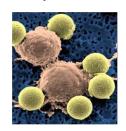




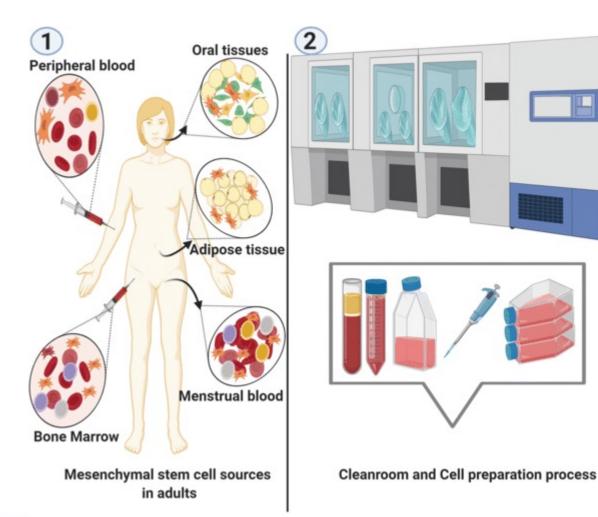
Treating Mesothelioma By Cell and Gene Therapies

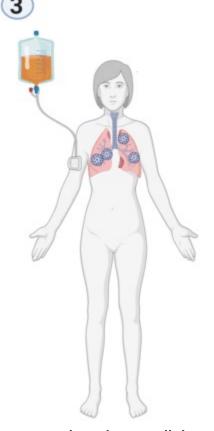
Massimo Dominici, Chiara Chiavelli & Giulia Grisendi

Mesenchymal Stromal/Stem Cells (MSC)

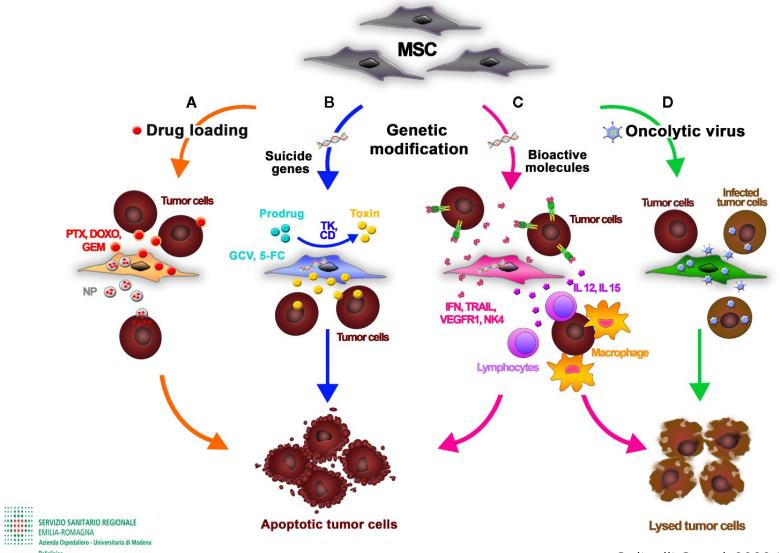


Chimeric Antigen Receptor (CAR) -Lymphocytes





Use of engineered MSC to target solid malignancies

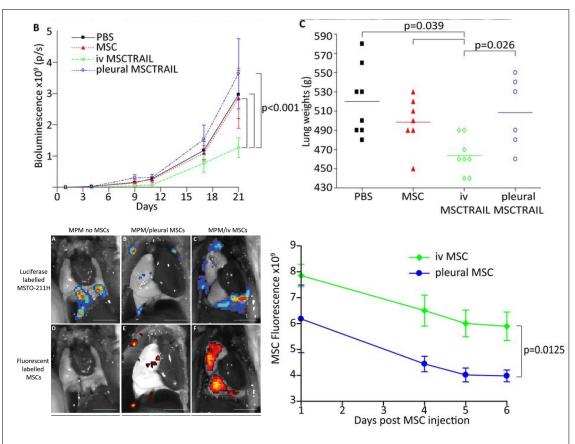


Use of engineered MSC to target solid malignancies

MSC-based in vivo pre-clinical studies for MPM

AUTHOR AND JOURNAL	TUMOR CELLS LINE	MSC DOSE AND DELIVERY	ADMINISTRATION NUMBER	RESULTS
Sage E. et al. (S.M. Janes)	MSTO intra pleural (80.000)	MSC sTRAIL 1.000.000 iv. And intra plural	5 (day 5; 9; 12;15;18)	No effect i.p. administration Tumor reduction (BLI) i.v.
Lathorp M.J	HEMSO intra peritoneally (1.000.000)	MSC-mbTRAIL 300.000 via intra peritoneum	Twice a week for 3 weeks starting from day 21	Slight reduction of tumore volume Reduction of sistemic inflammation
Cocce et al.	MSTO s.c. (1.000.000)	AD-MSC 5.000.000 s.c. close to tumor (MATRIGEL)	4 (day 0, 7,14,21 starting fromm 100 mm3 tumor volume)	Control of tumor growth comparable to Nab-PTX, reduction of tumor cell number

Systemic but not topical TRAIL-expressing MSC reduce tumor growth in malignant mesothelioma

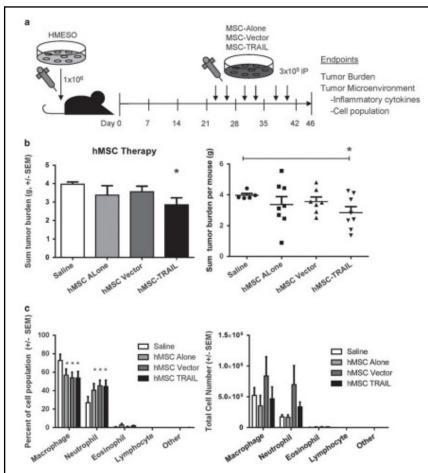


In vitro data

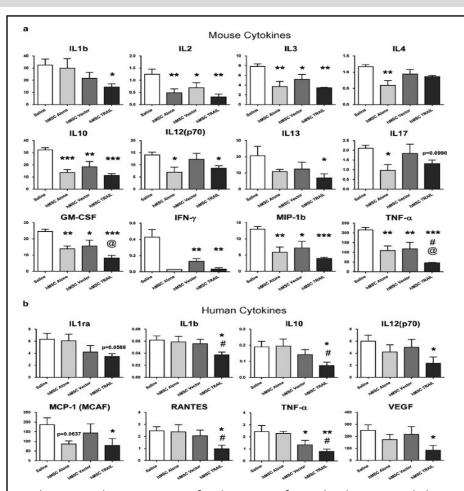
MSCTRAIL no doxycycline MSCTRAIL with doxycycline **GFP** Positive **GFP** Positive 3.04% Negative 96.8% Negative 2.03% 200-GFP GFP Met5A 60 H28 Percentage cell death and apoptosis ■MSTO-211H 50 40 20-

MSC transduction with TRAIL-IRES-eGFP under the control of a tetracycline-dependent. Human MPM exhibit variable in vitro sensitivity to rTRAIL and MSCTRAIL.

In vivo data

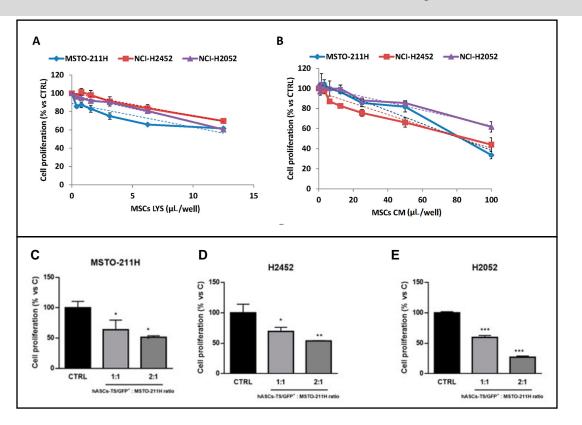


MSC-TRAIL reduce the growth of MPM when delivered i.v. Human MSCs home to MPM when delivered both i.p. and i.v. but i.v.-delivered MSCs incorporate into tumors in greater numbers than intrapleural-delivered MSCs.

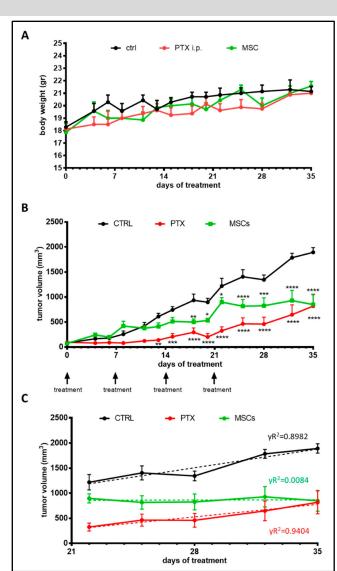


Antitumor effects of TRAIL-expressing MSC in a mouse xenograft model of human mesothelioma

TRAIL-expressing hMSCs inhibit tumor growth when administered intraperitoneally to mature tumors. hMSC administration significantly increased the percentage of neutrophils within the PLF cell population.



hMSC administration further significantly decreased the levels of multiple PLF cytokines and chemokines (both mouse and human) in this model significantly reducing the inflammatory tumor environment in vivo.

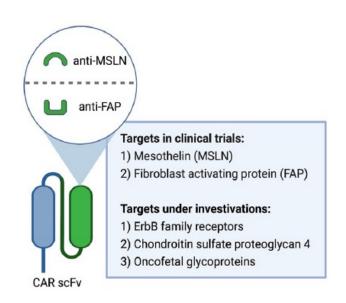


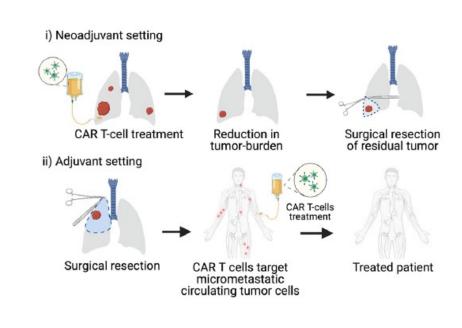
Inhibition of Human Malignant Pleural Mesothelioma Growth by MSC

MSCs lysate and secretome inhibited MPM cell proliferation in vitro. Specific co-culture experiments showed that the proliferation of MPMcells was significantly impaired by the interaction with hASCs cells. The efficacy of MSC was confirmed in vivo by a significant inhibition of tumor growth, similar to that produced by systemic administration of paclitaxel. No tumor progression was observed after the last MSC treatment, while tumors started to grow again after stopping chemotherapeutic treatment..

Coccè V et al. 2021 (Cells)

MSC Towards Clinics

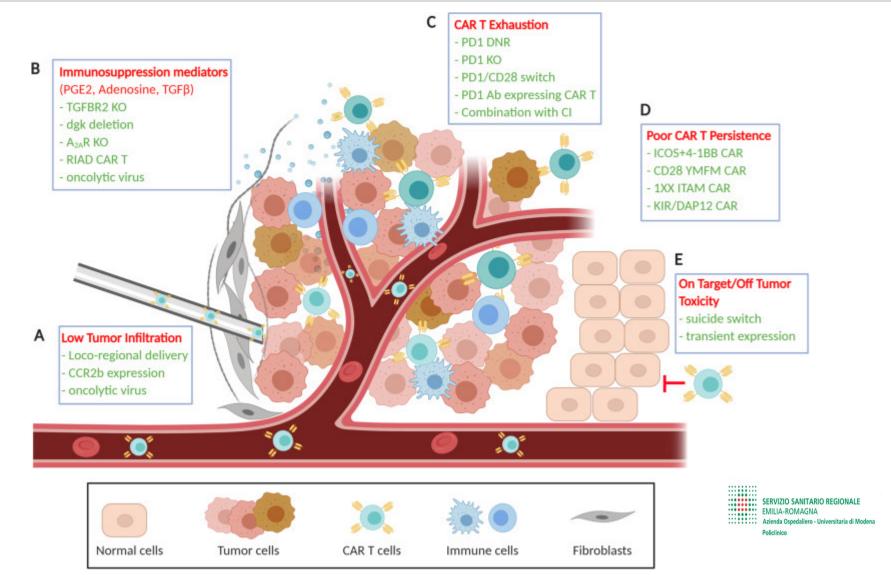

CAR T Cell Therapy against MPM



Antigen Targets in MPM

Mesothelin (MSLN) is an ideal cell-surface antigen to target. It is involved in tumor invasion and is expressed in 85% to 90% of MPM compared with lower levels in mesothelia.

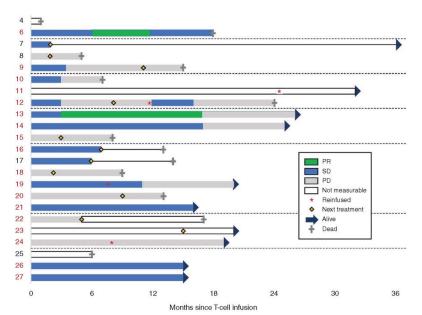
FAP is expressed in the tumor stroma of multiple epithelial tumors, including all histologic subtypes of mesothelioma, with limited expression in normal adult tissue.

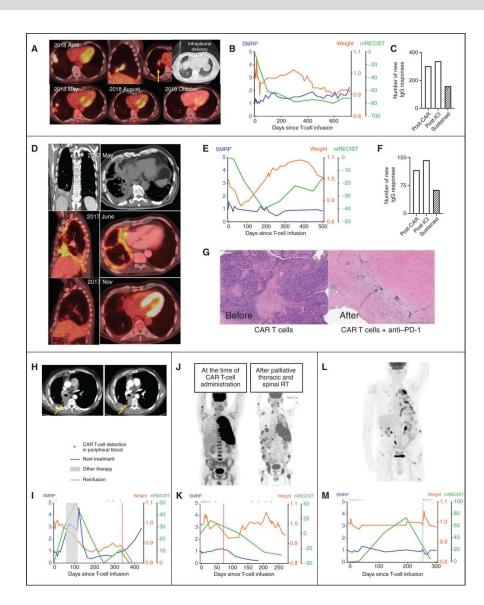


Surgery and CART treatment

CAR T Cell Activity in MPM: Strategies to Overcome the Barriers

CAR T Cell Therapy Clinical Trials for MPM


NTC, PHASE	TARGET ANTIGEN	CAR T CELL PRODUCT	DELIVERY	COMBINATORY THERAPY	CLINICAL SITE
NCT01355965 PhI	Mesothelin	mRNA transduced, mouse scFv	IV		University of Pennsylvania
NCT02159716, PhI	Mesothelin	Lentiviral transduced, mouse scFv	IV	w and w/o cyclophosphamide pretreatment	University of Pennsylvania
NCT03054298, PhI	Mesothelin	Lentiviral transduced, human scFv	IV/IPL		University of Pennsylvania
NCT02414269, PhI/II	Mesothelin	iCasp9M28z	IPL	w and w/o cyclophosphamide preconditioning, w and w/o pembro	Memorial Sloan Kettering Cancer Center
NCT04577326, PhI	Mesothelin	M28z-1XXPD1DNR	IPL	Cyclophosphamide	Memorial Sloan Kettering Cancer Center
NCT01583686, PhI/II	Mesothelin	Anti mesothelin CAR	IV	Fludarabine, cyclophosphamide, aldesleukin	National Cancer Institute
NCT03608618, PhI	Mesothelin	mRNA transduced PBMC	IP	Cyclophosphamide	MaxCyte
NCT03907852, PhI/II	Mesothelin	TRuC	IV	w and w/o cyclophosphamide preconditioning, w and w/o pembro	TCR2 Therapeutics
NCT04489862, PhI	Mesothelin	Anti-PD-1 nanobodies	IV	Cyclophosphamide	Wuhan Union Hospital
NCT03615313, PhI/II	Mesothelin	Anti-PD-1 antibody	IV	Fludarabine, cyclophosphamide	Shanghai Cell Therapy Research Institute
NCT01722149, PhI	FAP	FAP-specific redirected T cells	IPL	Neoadjuvant chemotherapy	University Hospital of Zurich



A Phase I Trial: Mesothelin CAR T with Pembrolizumab

- MSLN-targeted CAR T cells followed by the administration of pembrolizumab were associated with unusual survival outcomes, reaching a median OS of 23.9 months in 18 pretreated patients with MPM.
- The intrapleural administration of CAR T cells was feasible and reached long-lasting systemic circulation.
 In 39% of patients, CAR T cells were detected in peripheral blood for more than 100 days.
- The treatment had no grade 5 adverse events, and all grade 4 events were reversible laboratory abnormalities associated with lymphodepleting chemotherapy.

CAR-T Towards Clinics

www.nature.com/npjprecisiononcology

Check for updates

ARTICLE

OPEN

GD2 CAR T cells against human glioblastoma

Malvina Prapa (10,10), Chiara Chiavelli (1,10), Giulia Golinelli (1,10), Giulia Grisendi (1, Marco Bestagno (1,10), Rosanna Di Tinco³, Massimiliano Dall'Ora⁴, Giovanni Neri (1,10), Olivia Candini (1,10), Carlotta Spano⁴, Tiziana Petrachi (1,10), Laura Bertoni (1,10), Gianluca Camevale³, Giuseppe Pugliese¹, Roberta Depenni (1,10), Alberto Feletti (1,10), Corrado Iaccarino (1,10), Giacomo Pavesi (1,11), and Massimo Dominici (1,11).

nature

https://doi.org/10.1038/s41586-022-04489-4

Accelerated Article Preview

GD2-CART cell therapy for H3K27M-mutated diffuse midline gliomas

Received: 2 August 2021

Accepted: 28 January 2022

Accelerated Article Preview Published online: 07 February 2022

Cite this article as: Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature https://doi. org/10.1038/s41586-022-04489-4 (2022). Robbie G. Majzner, Sneha Ramakrishna, Kristen W. Yeom, Shabnum Patel, Harshini Chinnasamy, Llora M. Schultz, Rebecca M. Richards, I. Jlang, Valentin Barsan, Rebecca Mancusi, Anna C. Geraghty, Zinaida Good, Aaron Y. Mochizuki, Shawn M. Gillespie, Angus Martin Shaw Toland, Jasia Mahdi, Agnes Reschke, Esther Nie, Isabelle J. Chau, Maria Caterina Rotiroti, Christopher W. Mount, Christina Baggott, Sharon Mavroukakis, Emily Egeler, Jennifer Moon, Courtney Erickson, Sean Green, Michael Kunicki, Michelle Fujimoto, Zach Ehlinger, Warren Reynolds, Sreevidya Kurra, Katherine E. Warren, Snehit Prabhu, Hannes Vogel, Lindsey Rasmussen, Timothy T. Cornell, Sonia Partap, Paul G. Fisher, Cynthia J. Campen, Mariella G. Filbin, Gerald Grant, Bita Sahaf, Kara L. Davis, Steven A. Feldman, Crystal L. Mackall & Michelle Monje

Laboratory of Cellular Therapies

Dr. Malvina Prapa

Dr. Chiara Chiavelli (D. Laneri Fellowship)

Dr. Giulia Grisendi

Dr. Giuseppe Pugliese (now @King's College)

Dr. Giovanni Neri

Dr. Giulia Golinelli (now @U Pen)

Dr. Massimiliano Dall'Ora

Dr. Giulia Casari

Dr. Valentina Masciale

Dr. Ilenia Mastrolia

Dr. Valeria Samarelli

Dr. Virginia Catani

Acknowledgements

Prof. Giacomo Pavesi & Neurosurgery Team

UOC di Neurochirurgia, Ospedale Civile S. Agostino, Baggiovara, Modena, Italy

Dr. Laura Bertoni

University-Hospital of Modena and Reggio Emilia, Modena, Italy

Dr. Roberta Depenni

Division of Oncology, University-Hospital of Modena and Reggio Emilia, Modena, Italy

Dr. Lorenzo lughetti and Dr. Monica Cellini

Division of Pediatrics, University-Hospital of Modena and Reggio Emilia, Modena, Italy

Prof. Dario Campana

Department of Pediatrics, National University of Singapore, Singapore

Dr. Marco Bestagno

International Centre for Genetic Engineering and Biotechnology, Trieste, Italy

Prof. Mariano Viapiano

Department of Neuroscience & Physiology SUNY UPSTATE, Syracuse, NY (USA)

Dr. Luca Accorsi

POS Lab – Chemical/Physical analysis, Technopole, Mirandola, Italy